skip to main content


Search for: All records

Creators/Authors contains: "Owolabi, Olukunle O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Power outage prediction is important for planning electric power system response, restoration, and maintenance efforts. It is important for utility managers to understand the impact of outages on the local distribution infrastructure in order to develop appropriate maintenance and resilience measures. Power outage prediction models in literature are often limited in scope, typically tailored to model extreme weather related outage events. While these models are sufficient in predicting widespread outages from adverse weather events, they may fail to capture more frequent, non-weather related outages (NWO). In this study, we explore time series models of NWO by incorporating state-of-the-art techniques that leverage the Prophet model in Bayesian optimization and hierarchical forecasting. After defining a robust metric for NWO (non-weather outage count index, NWOCI), time series forecasting models that leverage advanced preprocessing and forecasting techniques in Kats and Prophet, respectively, were built and tested using six years of daily state- and county-level outage data in Massachusetts (MA). We develop a Prophet model with Bayesian True Parzen Estimator optimization (Prophet-TPE) using state-level outage data and a hierarchical Prophet-Bottom-Up model using county-level data. We find that these forecasting models outperform other Bayesian and hierarchical model combinations of Prophet and Seasonal Autoregressive Integrated Moving Average (SARIMA) models in predicting NWOCI at both county and state levels. Our time series trend decomposition reveals a concerning trend in the growth of NWO in MA. We conclude with a discussion of these observations and possible recommendations for mitigating NWO. 
    more » « less
  2. Abstract Animal-related outages (AROs) are a prevalent form of outages in electrical distribution systems. Animal-infrastructure interactions vary across species and regions, underlining the need to study the animal-outage relationship in more species and diverse systems. Animal activity has been an indicator of reliability in the electrical grid system by describing temporal patterns in AROs. However, these ARO models have been limited by a lack of available species activity data, instead approximating activity based on seasonal patterns and weather dependency in ARO records and characteristics of broad taxonomic groups, e.g. squirrels. We highlight available resources to fill the ecological data gap limiting joint analyses between ecology and energy sectors. Species distribution modeling (SDM), a common technique to model the distribution of a species across geographic space and time, paired with community science data, provided us with species-specific estimates of activity to analyze alongside spatio-temporal patterns of ARO severity. We use SDM estimates of activity for multiple outage-prone bird species to examine whether diverse animal activity patterns were important predictors of ARO severity by capturing existing variation within animal-outage relationships. Low dimensional representation and single patterns of bird activity were important predictors of ARO severity in Massachusetts. However, both patterns of summer migrants and overwintering species showed some degree of importance, indicating that multiple biological patterns could be considered in future models of grid reliability. Making the best available resources from quantitative ecology known to outside disciplines can allow for more interdisciplinary data analyses between ecological and non-ecological systems. This can result in further opportunities to examine and validate the relationships between animal activity and grid reliability in diverse systems. 
    more » « less
  3. Abstract

    Hydroelectric power (hydropower) is unique in that it can function as both a conventional source of electricity and as backup storage (pumped hydroelectric storage and large reservoir storage) for providing energy in times of high demand on the grid (S. Rehman, L M Al-Hadhrami, and M M Alam), (2015Renewable and Sustainable Energy Reviews,44, 586–98). This study examines the impact of hydropower on system electricity price and price volatility in the region served by the New England Independent System Operator (ISONE) from 2014-2020 (ISONE,ISO New England Web Services API v1.1.”https://webservices.iso-ne.com/docs/v1.1/, 2021. Accessed: 2021-01-10). We perform a robust holistic analysis of the mean and quantile effects, as well as the marginal contributing effects of hydropower in the presence of solar and wind resources. First, the price data is adjusted for deterministic temporal trends, correcting for seasonal, weekend, and diurnal effects that may obscure actual representative trends in the data. Using multiple linear regression and quantile regression, we observe that hydropower contributes to a reduction in the system electricity price and price volatility. While hydropower has a weak impact on decreasing price and volatility at the mean, it has greater impact at extreme quantiles (>70th percentile). At these higher percentiles, we find that hydropower provides a stabilizing effect on price volatility in the presence of volatile resources such as wind. We conclude with a discussion of the observed relationship between hydropower and system electricity price and volatility.

     
    more » « less
  4. null (Ed.)
    The electric power grid is a critical societal resource connecting multiple infrastructural domains such as agriculture, transportation, and manufacturing. The electrical grid as an infrastructure is shaped by human activity and public policy in terms of demand and supply requirements. Further, the grid is subject to changes and stresses due to diverse factors including solar weather, climate, hydrology, and ecology. The emerging interconnected and complex network dependencies make such interactions increasingly dynamic, posing novel risks, and presenting new challenges to manage the coupled human–natural system. This paper provides a survey of models and methods that seek to explore the significant interconnected impact of the electric power grid and interdependent domains. We also provide relevant critical risk indicators (CRIs) across diverse domains that may be used to assess risks to electric grid reliability, including climate, ecology, hydrology, finance, space weather, and agriculture. We discuss the convergence of indicators from individual domains to explore possible systemic risk, i.e., holistic risk arising from cross-domain interconnections. Further, we propose a compositional approach to risk assessment that incorporates diverse domain expertise and information, data science, and computer science to identify domain-specific CRIs and their union in systemic risk indicators. Our study provides an important first step towards data-driven analysis and predictive modeling of risks in interconnected human–natural systems. 
    more » « less